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Tools provided by «z

NVIDIA.
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Omniverse
Version
Isaac Gym (previous ver) | Update in

June

Isaac Sim

Omniverse Create

e Learned from tutorial video list provided by Cobionix
Held tutorial sessions with Cobionix weekly at the start
of this project Isaac Sim (with Isaac

e Attend community sharing meeting and be active in Gym integrated)
Omniverse forum
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Omniverse Create Part

e Converted myCobot related STEP files (main body, camera flange and adaptive gripper) using
SOLIDWORKS and Fusion 360 to compatible format to Omniverse.

e Assembled converted parts in Omniverse Create, created rigid body and colliders for each link,
added joints between adjacent links and assigned driver onto each active and movable joint.

e Overcomed the gearing issue of the gripper and created unique environments by every team
member.

e Implemented simple control using GUI by add stiffness and damping onto each joint driver and set
target position value or target velocity value.

Figure 1: Gripper’'s movement Figure 2: Successful Implementation of Joints
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Previous Isaac Gym Part

e Setup Linux environment for Isaac Sim and Isaac Gym and took example training environments as
reference to build myCobot in random_policy circumstance.
e Rebuilt myCobot with camera flange and adaptive gripper in urdf format as old Isaac Gym did not
support USD files yet.
e Revised usd import from example and created multiple instances for myCobot.
o While urdf have limitation about their stricted tree structure of links, the gripper part need to
be simplified.

Figl. Cartpole Example Fig2. Humanoid Example Fig3. Multiple myCobot Instances
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Updated Isaac Sim Part - Modelling
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e With Isaac Gym integrated into updated Isaac Sim, new docs were released and our team rebuilt

myCobot model to fit new features.
o  Key structures with visual xform and collision xform, model became instanceable which will remain only one
mesh and lead to less memory usage. (refered Franka Robot structure)
o  Add missing PhyxScene, Articulation root defining to rebuild robot to meet the instanceable model
requirement, and modifies the physical property of obey the reality circumstance.

e Add walls to avoid camera interference among different environments

Added camera after converting instanceable to keep joints active

Simplified the gripper structure from complex gearing system into just two dependent prismatic
joints that only move in one direction.

&

Figl. myCobot with camera shown Fig2. Gripper closed status Fig3. Single myCobot Instanceable model
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Updated Isaac Sim Part - Scripts

e Learned from examples like Cartpole and Shadow hands to be familiar with code structure and related
functions to implement a simple RL training environment.
Created new repository to track the code update and model version update.
Reduced class inheritance complexity to figure out the basic classes that examples are using.
Imported myCobot.usd to Isaac Sim with multiple instances successfully, together with camera flange
and adaptive gripper.

e Currently limited the angles limit of each joint to keep its movement detectable but not exaggerated

] e - ESES
B¢ end offect camera’ ® Root Layer R~ 'y = % y
-3 end_effect_camera n = Root Layer ) § g ‘

Fig1l. myCobot model with gripper imported singly Fig2. RGB camera image Fig3. 64 myCobot Instances
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Updated Isaac Sim Part - Scripts

Added resizing and translation function to ensure models stays above ground and have proper size.
Added red cube through scripts and could be revised to random position after each round of training.
Activated the camera in each instances which can be viewed through created viewpoints.
Successfully implemented the random policy algorithm with myCobot model to test whether all joints,
gripper and camera are working correctly.
e Finished get observation function (next state), in which we can get the RGB camera matrix, joints
position, joint velocity and etc.
e All interfaces ready for RL.

get observations(self) -> dict:

self. env. world.render()
camera_matrix = []

for 1 in range(self._num_envs):

sd_helper.get_groundtruth(
I , self.viewport window[i], verify sensor init= e, wait_for_sensor data=0
)["rgb’ 3]
camera_matrix.append(gt)
= self. mycobots.get joint positions()
= self. mycobots.get_joint velocities()

Figl. Available variables in next state

Fig2. Rendered random policy of myCobot
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Textbook Reading: Reinforcement Learning by Richard S. Sutton and

Andrew G. Barto

e Chapter 1: Intro, Chapter 3: Finite MDP, Chapter 6: Temporal-Difference
Learning,and Chapter 13: Policy Gradient Methods

Online Research:
e Model-free & model-based RL algorithms
e Lecture on Deep reinforcement learning for robotic control by Human Brain Project
e  Algorithms:
- Deep Deterministic Policy Gradient (DDPG)
- Trust Region Policy Optimization (TRPO)
- Proximity Policy Optimization (PPO)
- Asynchronous Advantage Actor-Critic (A2C)
- Soft Actor-Critic (SAC)
- Epsilon Greedy
- Decaying Epsilon Greedy

Reinforcement |
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto
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The team studied Nvidia github repository along with other related repositories, and read corresponding
documentations
Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim
https://github.com/NVIDIA-Omniverse/OmnilsaacGymEnvs
- Issac Sim Setup
- Provided Examples (Cartpule, Shadow Hand, etc.)
- RL Games Repository https://github.com/Denys88/rl games
- Omniverse Python Documentation
https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.gym/docs/index.html
- How to set up our own tasks
https://github.com/NVIDIA-Omniverse/OmnilsaacGymEnvs/blob/main/docs/framework.md
- RL Training Examples
https://github.com/NVIDIA-Omniverse/OmnilsaacGymEnvs/blob/main/docs/rl _examples.md



https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
https://github.com/Denys88/rl_games
https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.gym/docs/index.html
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/framework.md
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/rl_examples.md
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The ENV file defines the RL cycle R

The class inherits /////////' from omni.isaac.gym.vec_env import VecEnvBase
from a base class in

the isaac sim library ampgort; torch
import numpy as np

# VecEnv Wrapper for RL training

class VecEnvRLGames(VecEnvBase):

def _process_data(self):
Initialize Data _,———""—————————' self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()
self._rew = self._rew.to(self._task.rl_device).clone()
self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()
self._resets = self._resets.to(self._task.rl_device).clone()

self._extras = self._extras.copy()

def set_task(

,,,,,,”,,——”””' self, task, backend="numpy", sim_params=None, init_sim=True
Set up task ) -> None:

super().set_task(task, backend, sim_params, init_sim)

self.num_states = self._task.num_states

self.state_space = self._task.state_space
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def step(self, actions):

. ’/,//,,/r/”' actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone()
Transit to next state . g '
self._task.pre_physics_step(actions)

for _ in range(self._task.control_frequency_inv):

,,,—,,/—/”””' self._world.step(render=self._render)
Render the frames

self.sim_frame_count += 1

self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step()

self._states = self._task.get_states()

Compute and — self._process_data()
update parameters
obs_dict = {"obs": self._obs, "states": self._states}

return obs_dict, self._rew, self._resets, self._extras

def reset(self):

""" Resets the task and applies default zero actions to recompute observations and states.

Reset the task and

—_____,_———" self._task.reset()
recompute the

actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.device)

parameters : <
obs_dict, _, _, _ = self.step(actions)

return obs_dict
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from omniisaacgy ils | .hydra_ o
omniisaacgy v 1S g.reformat import omegaconf to_dict, print dict
omniisaacgy Is. lgames_utils rt RLGPUAlgoObserver, RLGPUENV
m omniisaacgyme utils.task util import initialize_ task
omniisaacgy utils.config utils.path_utils import retrieve_checkpoint_path
m omniisaacgymenvs.envs.vec_env_rlgam import VecEnvRLGames

rt hydra
from omegaconf import DictConfig

rl games.common import env_configurations, vecenv
rl_games.torch runner

port os

import

Initialize the rl
games trainer

Run the Trainer

al & Industrial Engineering
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RLGTrainer():
_ init_ (self, cfg, cfg_dict):
self.cfg = cfg
self.cfg dict = cfg dict

launch_rlg_hydra(self, env):
self.cfg dict["task"]["test"] = self.cfg.test

vecenv.register('RLGPU’,
config name, num_actors, **kwargs: RLGPUEnv(config name, num_actors, **kwargs))
env_configurations.register('r
‘vecenv_type': 'RLGPU',

. e —
contlig_name, num_actors, Kwargs: RLGPUENV(contig name, num_actors, Kwargs))
env_configurations.register('rl %
‘vecenv_type': 'RLGPU

‘env_creator':

self.rlg config dict = omegaconf_to_dict(self.cfg.train)
run(self):

runner = Runner(RLGPUAlgoObserver())
runner.load(self.rlg config dict)
runner.reset()

experiment_dir = os.path.join('runs’, self.cfg.train.params.config.name)

os.makedirs(experiment_dir, exist ok= )

with open(os.path.join(experiment_dir, ‘config.yaml'), ‘'w') as f:
f.write(OmegaConf.to_yaml(self.cfg))

runner.run({
e 3 self.cfg.test,
i self.cfg.test,
self.cfg.checkpoint,




R L Te a m % Mechanical & Industrial Engineering

» UNIVERSITY OF TORONTO
Prepared by: Tingge Zhang & Shawn Zhai '

RLTask Class from Nvidia OmnilsaacGymEnvs Repository

# initialize data spaces (defaults to gym.Box)
if not hasattr(self, "action_space”):

self.action_space =np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0)

if not hasattr(self, "observation_space"):

self.observation_space =np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf)

if not hasattr(self, "state_space”):

self.state_space = np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf)

from abc import abstractmethod
import numpy as np

import torch

from gym import space

Classes and methods
from the OpenAl Gym
Github Repository

from omni.isaac.core.tasks import BaseTask

from omni.isaac.core.utils.types import ArticulationAction

from omni.isaac.core.utils.prims import define_prim

from omni.isaac.cloner import GridCloner

from omniisaacgymenvs.tasks.utils.usd_utils import create_distant_light

import omni.kit
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Space class and Box class

* They clearly define how to interact with environments, i.e. they specify what actions need to look like
and what observations will look like

* They allow us to work with highly structured data (e.g. in the form of elements of :class: Dict” spaces)
and painlessly transform them into flat arrays that can be used in learning code

* They provide a method to sample random elements. This is especially useful for exploration and debugging.

e The Space class defines the general structure for action, state and
observation spaces

e The Box class inherits from the Space class, it takes in 2 numpy
arrays (1 for lower bound and 1 for upper bound) that defines the
data range of spaces

e It has a sample method that generate a random sample inside the
box
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self.action_space = spaces.Box(
np.array([-1, @, @]).astype(np.float32),
np.array([+1, +1, +1]).astype(np.float32),
) # steer, gas, brake

The first array np.array([-1,0,0] are the lowest accepted values, and the second

np.array([+1,+1,+1]) are the highest accepted values. In this case (using the comment) we see
that we have 3 available actions:

1. Steering: Real valued in [-1, 1]
2. Gas: Real valued in [e, 1]

3. Brake: Real valued in [o, 1]
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e Literature Review: Playing Atari Breakout Game with Deep
Reinforcement Learning by Mnih, Kavukcuoglu, Silver, Graves,
Antonoglou, Wierstra, Riedmiller

o This article presented a Deep Q-learning model that finds
a optimal control policy for playing the Breakout Game.

o The model can be modified and used in our model to
analyze frames captured by the robot’s camera in order to
develop a policy for picking and placing tasks.
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Import OpenAl baselines githubrepo .
and keras library from tensorflow

Set up parameters and environments
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5N
iy
w UNIVERSITY OF TORONTO

baselines.common.atari_wrappers make_atari, wrap_deepmind

numpy as np
tensorflow as tf
tensorflow impc keras

tensorflow.keras layers

seed

gamma

epsilon

epsilon_min

epsilon_max 1.0

epsilon_interval (
epsilon_max - epsilon_min

) # Rate at which to

batch_size = 32 # Siz

max_steps_per_episode

env = make_atari("BreakoutNoFrameskip-v4")

env = wrap_deepmind(env, frame_stack=True, scale=True)

env.seed(seed)
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num_actions 4

def create_q_model():

inputs layers.Input(shape=(84

layerl layers.Conv2D( 8, strides=4, activation="relu")(inputs)

Create |ayerS that COﬂVO|Ve layer2 = layers.Conv2D(64, 4, strides=2, activation="relu")(layerl)
fllters and rectlfy Input |mages \ layer3 layers.Conv2D(64, 3, strides=1, activation="relu")(layer2)

layer4 = layers.Flatten()(layer3)

layersS layers.Dense(512, activation="relu")(layer4)

action layers.Dense(num_actions, activation="linear")(layer5)

return keras.Model(inputs=inputs, outputs=action)

Create a model and a target

model for Deep Q Learning ~— —_ [EEKIRENPINRI

model_target = create_q_model()
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if frame_count < epsilon_random_frames epsilon np.random.rand(1)[0]:

action = np.random.choice(num_actions)

else:

state_tensor = tf.convert_to_tensor(state)

SeIeCt aCtIOnS US|ng deCayIng state_tensor = tf.expand_dims(state_tensor, @)
epSI|On greedy a|gOr|thm and action_probs Todel(state_tensor, training-False)
compute next state and reward ake best 2

tf.argmax(action_probs[2]) .numpy()

epsilon epsilon_interval / epsilon_greedy_frames

epsilon = max(epsilon, epsilon_min)

state_next, reward, done, _ = env.step(action)

state_next = np.array(state_next)

Append the observations to the episode_reward +- reward
replay buffer

action_history.append(action)
state_history.append(state)
state_next_history.append(state_next)
done_history.append(done)
rewards_history.append(reward)

state state_next
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if frame_count * update_after_actions ] len(done_history) > batch_size:

indices np.random.choice(range(len(done_history)), size=batch_size)

state_sample = np.array([state_history[i] for i indices])

state_next_sample = np.array([state_next_history[i] for i indices])

rewards_sample [rewards_history[i] for i indices]

Update the target mOdeI every_ 4 action_sample [action_history[i] for i indices]
frames for future Q value prediction G aple LR Coert o benanrt

[float(done_history[i]) for i indices]

future_rewards = model target predlct(state

updated_q_values = rewards_sample + gamma * tf.reduce_max(

future_rewards, axis=1
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Literature Review on papers of Robot arm pick & drop tasks in the robot community:
e Algorithm: Deep Q-learning is commonly used for discrete action space, Deep Deterministic Policy
Gradient (DDPG) and Trust Region Policy Optimization (TRPO) are used for continuous action space

e State Space:
o For discrete algorithms, they turn raw RGB-D images into 3D point cloud or height maps as the

state input

o For continuous algorithms, they use position and angular velocity of the joints on the robot arm
along with the x, y, z position of the object as the state input
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e Action Space:
o Actions are categorized as “pushing” and “grasping”

o The pushing action is performed by moving the gripper horizontally for a certain distance,
directions are divided into 16 intervals (360° / 16 = 22.5°)

o  For continuous action space, it is typically defined by the changes in position and velocity of
the robot’s actuators (actuated joints).

o To detect if a object is successfully grasped, some papers use sensors and visual indicators,
and some other paper make the gripper perform the closing action again after grasping, if the
gripper is still in the opening state, that means the object is being held by the gripper


https://www.degreesymbol.net/#:~:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:~:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
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e Reward Function:
o #1: Use distance between the gripper and the object
m 3D Distance is approximated using 2D position captured by the camera

m Penalize the distance from the object to the gripper

o #2: Assign a small positive reward for pushing actions if it makes it easier for grasping in the
future

m If the difference between the current and previous D heightmap or 3D point cloud is
greater than the customized threshold, the action is considered having a positive effect
on the following grasping work
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o  #3: Apply small negative reward to all steps prior to termination to encourage a faster

grasping action.

o #4: Use piecewise reward function to avoid sparse reward which leads to slow or

non-convergence in model training.

m Introduces the idea of “pixel change”

m Divide the pixel change percentage into several intervals And assign reward accordingly
m The paper does not define “pixel change” and its advantages, here's our inference:

if the frame has 100 pixels and 60 pixels in the previous frame
appears again in the current frame, then the pixel change will
be 40%. It is used as a way to prevent sparse reward and also
likely to promote exploration.

R = {

i 1
—1
0.3
0.5
0.7

| —0.1

grasp successfully

grasp failed
pixel change T (10% ~ 24%)

pixel change T(24% ~ 40%)
pixel change T(40% ~ 100%)
otherwise
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e A single RGB-D camera set at a fixed location in the workspace is commonly used for capturing the states

e Setting cameras from dual viewpoint (set cameras both within and outside the grasping area) is helpful
for ensuring no information is missing and the complete formation of object is captured

e

A e

e Affine Transformation can be used to determine 3D Distance uéing 2D position captured by the camera

{

M

4 World Camera Film Pixel
(ot,, ot, at,) coordinates coordinates coordinates coordinates
(vp, vpy. vp,) Y 3 5 i
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Figure 5. Forward projection.
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-  Documented the myCobot 280 Pi related material

About mycobot API, install software, links, resources, ect

- Controlled myCobot in different methods

Used Blockly to proceed joint control and gripper status control
Used Roboflow to make joint function examination

Used Python API - pymycobot to perform high level scripts control

- Established remote connection and virtual desktop to myCobot using VNC server

Fig1. Roboflow interface
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Fig2. myblockly interface

Fig3. Roboflow control

Fig4. myblockly control
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- Upgrade myCobot Raspberry Pi performance by reinstalling the OS to activate not
running core.
- Camera’s frame per second got improved significantly
- Installed camera flange and adaptive gripper onto the main body
- Tried different object detection to detect dice
- Implemented the “EfficientNet” and “YOLO” models using Tensorflow Lite, which can get phone

class and key class in pre-trained model instead of dice
- Based on opencv-python, applied HSV on greyscale analysis to isolate dice from background

m ] | object detector 4

Figl. Key class detection Fig2. dice detection in opencv-python
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Pick and Place Task

Object detection Opencv-python findContours method
.

Transformation matrix
}

Joint Control

-
Gripper Control Close gripper to grab the dice

v

Back to Origin - Move to Destination

Transformed the object coordinates from camera frame to robot end-effector
local frame to world coordinates which was defined at the base of myCobot

Input end-effector destination and
control drivers to corresponding angles

Gripper Open

Pick part
Back to Origin

Place part



http://www.youtube.com/watch?v=tawV82EyiXw

Physics system Team - Final Report R UNIVERSITY OF TORONTO

.....

Presented by: Erry Guan

- Determined the action space based on available joint range
- Camera calibration and distortion using chessboard calibration
- RL training scripts APl have been completed for physics system

Currently limitation of Pick and Place:

e Long waiting time to satisfy motor calibration
e Object detection angle limitation for monocular camera, need more research to
figure out how to implement this improvement
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Thank you for your attention



