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Simulation Team -  Final Report

Omniverse Create Isaac Sim

Isaac Gym (previous ver.)

Isaac Sim (with Isaac 
Gym integrated)

Omniverse 
Version 
Update in 
June

Tools provided by 

● Learned from tutorial video list provided by Cobionix
● Held tutorial sessions with Cobionix weekly at the start 

of this project
● Attend community sharing meeting and be active in 

Omniverse forum



Simulation Team -  Final Report
Omniverse Create Part

● Converted myCobot related STEP files (main body, camera flange and adaptive gripper) using 
SOLIDWORKS and Fusion 360 to compatible format to Omniverse.

● Assembled converted parts in Omniverse Create, created rigid body and colliders for each link, 
added joints between adjacent links and assigned driver onto each active and movable joint.

● Overcomed the gearing issue of the gripper and created unique environments by every team 
member.

● Implemented simple control using GUI by add stiffness and damping onto each joint driver and set 
target position value or target velocity value.

Figure 1: Gripper’s movement Figure 2: Successful Implementation of Joints



Simulation Team -  Final Report
Previous Isaac Gym Part

● Setup Linux environment for Isaac Sim and Isaac Gym and took example training environments as 
reference to build myCobot in random_policy circumstance.

● Rebuilt myCobot with camera flange and adaptive gripper in urdf format as old Isaac Gym did not 
support USD files yet.

● Revised usd import from example and created multiple instances for myCobot.
○ While urdf have limitation about their stricted tree structure of links, the gripper part need to 

be simplified.

Fig1. Cartpole Example Fig2. Humanoid Example Fig3. Multiple myCobot Instances



Simulation Team -  Final Report
Updated Isaac Sim Part -  Modelling

● With Isaac Gym integrated into updated Isaac Sim, new docs were released and our team rebuilt 
myCobot model to fit new features.

○ Key structures with visual xform and collision xform, model became instanceable which will remain only one 
mesh and lead to less memory usage. (refered Franka Robot structure)

○ Add missing PhyxScene, Articulation root defining to rebuild robot to meet the instanceable model 
requirement, and modifies the physical property of obey the reality circumstance.

● Add walls to avoid camera interference among different environments
● Added camera after converting instanceable to keep joints active
● Simplified the gripper structure from complex gearing system into just two dependent prismatic 

joints that only move in one direction.

Fig1. myCobot with camera shown Fig2. Gripper closed status Fig3. Single myCobot Instanceable model



Simulation Team -  Final Report
Updated Isaac Sim Part -  Scripts

● Learned from examples like Cartpole and Shadow hands to be familiar with code structure and related 
functions to implement a simple RL training environment.

● Created new repository to track the code update and model version update.
● Reduced class inheritance complexity to figure out the basic classes that examples are using.
● Imported myCobot.usd to Isaac Sim with multiple instances successfully, together with camera flange 

and adaptive gripper.
● Currently limited the angles limit of each joint to keep its movement detectable but not exaggerated.

Fig1. myCobot model with gripper imported singly Fig2. RGB camera image Fig3. 64 myCobot Instances



Simulation Team -  Final Report

● Added resizing and translation function to ensure models stays above ground and have proper size.
● Added red cube through scripts and could be revised to random position after each round of training.
● Activated the camera in each instances which can be viewed through created viewpoints.
● Successfully implemented the random policy algorithm with myCobot model to test whether all joints, 

gripper and camera are working correctly.
● Finished get observation function (next state), in which we can get the RGB camera matrix, joints 

position, joint velocity and etc.
● All interfaces ready for RL.

Updated Isaac Sim Part -  Scripts

Fig1. Available variables in next state 
Fig2. Rendered random policy of myCobot



RL team

Textbook Reading: Reinforcement Learning by Richard S. Sutton and 
Andrew G. Barto

● Chapter 1: Intro, Chapter 3: Finite MDP, Chapter 6: Temporal-Difference 
Learning,and Chapter 13: Policy Gradient Methods

Online Research:
● Model-free & model-based RL algorithms
● Lecture on Deep reinforcement learning for robotic control by Human Brain Project
● Algorithms:

- Deep Deterministic Policy Gradient (DDPG)
- Trust Region Policy Optimization (TRPO)
- Proximity Policy Optimization (PPO)
- Asynchronous Advantage Actor-Critic (A2C)
- Soft Actor-Critic (SAC)
- Epsilon Greedy
- Decaying Epsilon Greedy

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

The team studied Nvidia github repository along with other related repositories, and read corresponding 
documentations

- Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim 
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs

- Issac Sim Setup
- Provided Examples (Cartpule, Shadow Hand, etc.)

- RL Games Repository https://github.com/Denys88/rl_games
- Omniverse Python Documentation 

https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.gym/docs/index.html
- How to set up our own tasks

https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/framework.md
- RL Training Examples

https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/rl_examples.md

Prepared by: Tingge Zhang & Shawn Zhai

https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
https://github.com/Denys88/rl_games
https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.gym/docs/index.html
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/framework.md
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/docs/rl_examples.md


RL Team

The ENV file defines the RL cycle

The class inherits 
from a base class in 
the isaac sim library

Initialize Data

Set up task

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Transit to next state

Render the frames

Compute and 
update parameters

Reset the task and 
recompute the 
parameters

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Initialize the rl 
games trainer

Run the Trainer

Prepared by: Tingge Zhang & Shawn Zhai



RL Team
RLTask Class from Nvidia OmniIsaacGymEnvs Repository

Classes and methods 
from the OpenAI Gym 
Github Repository

Prepared by: Tingge Zhang & Shawn Zhai



Space class and Box class

RL Team

● The Space class defines the general structure for action, state and 
observation spaces

● The Box class inherits from the Space class, it takes in 2 numpy 
arrays (1 for lower bound and 1 for upper bound) that defines the 
data range of spaces

● It has a sample method that generate a random sample inside the 
box

Prepared by: Tingge Zhang & Shawn Zhai



RL Team
Prepared by: Tingge Zhang & Shawn Zhai



● Literature Review: Playing Atari Breakout Game with Deep 
Reinforcement Learning by Mnih, Kavukcuoglu, Silver, Graves, 
Antonoglou, Wierstra, Riedmiller
○ This article presented a Deep Q-learning model that finds 

a optimal control policy for playing the Breakout Game.
○ The model can be modified and used in our model to 

analyze frames captured by the robot’s camera in order to 
develop a policy for picking and placing tasks. 

RL Team
Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Import OpenAI baselines github repo 
and keras library from tensorflow

Set up parameters and environments

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Create layers that convolve 
filters and rectify input images

Create a model and a target 
model for Deep Q Learning

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Select actions using decaying 
epsilon greedy algorithm and 
compute next state and reward

Append the observations to the 
replay buffer

Prepared by: Tingge Zhang & Shawn Zhai



RL Team

Update the target model every 4 
frames for future Q value prediction

Prepared by: Tingge Zhang & Shawn Zhai



Literature Review on papers of Robot arm pick & drop tasks in the robot community: 
● Algorithm: Deep Q-learning is commonly used for discrete action space, Deep Deterministic Policy 

Gradient (DDPG) and Trust Region Policy Optimization (TRPO) are used for continuous action space

● State Space:
○ For discrete algorithms, they turn raw RGB-D images into 3D point cloud or height maps as the 

state input

○ For continuous algorithms, they use position and angular velocity of the joints on the robot arm 
along with the x, y, z position of the object as the state input

RL Team
Prepared by: Shawn Zhai & TinggePrepared by: Shawn Zhai & Tingge Zhang



● Action Space:
○ Actions are categorized as “pushing” and “grasping”

○ The pushing action is performed by moving the gripper horizontally for a certain distance, 
directions are divided into 16 intervals (360° / 16 = 22.5°)

○ For continuous action space, it is typically defined by the changes in position and velocity of 
the robot’s actuators (actuated joints). 

○ To detect if a object is successfully grasped, some papers use sensors and visual indicators, 
and some other paper make the gripper perform the closing action again after grasping, if the 
gripper is still in the opening state, that means the object is being held by the gripper

RL Team
Prepared by: Shawn Zhai & TinggePrepared by: Shawn Zhai & Tingge Zhang

https://www.degreesymbol.net/#:~:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:~:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.


● Reward Function:

○ #1: Use distance between the gripper and the object

■ 3D Distance is approximated using 2D position captured by the camera

■ Penalize the distance from the object to the gripper

○ #2: Assign a small positive reward for pushing actions if it makes it easier for grasping in the 
future

■ If the difference between the current and previous D heightmap or 3D point cloud is 
greater than the customized threshold, the action is considered having a positive effect 
on the following grasping work

RL Team
Prepared by: Shawn Zhai & TinggePrepared by: Shawn Zhai & Tingge Zhang



○ #3: Apply small negative reward to all steps prior to termination to encourage a faster 
grasping action. 

○ #4: Use piecewise reward function to avoid sparse reward which leads to slow or 
non-convergence in model training.

■ Introduces the idea of “pixel change”
■ Divide the pixel change percentage into several intervals And assign reward accordingly
■ The paper does not define “pixel change” and its advantages, here’s our inference:

if the frame has 100 pixels and 60 pixels in the previous frame
appears again in the current frame, then the pixel change will 
be 40%. It is used as a way to prevent sparse reward and also 
likely to promote exploration.

RL Team
Prepared by: Shawn Zhai & TinggePrepared by: Shawn Zhai & Tingge Zhang



● A single RGB-D camera set at a fixed location in the workspace is commonly used for capturing the states

● Setting cameras from dual viewpoint (set cameras both within and outside the grasping area) is helpful 
for ensuring no information is missing and the complete formation of object is captured

● Affine Transformation can be used to determine 3D Distance using 2D position captured by the camera

RL Team
Prepared by: Shawn Zhai & TinggePrepared by: Shawn Zhai & Tingge Zhang



- Documented the myCobot 280 Pi related material
- About mycobot API, install software, links, resources, ect

- Controlled myCobot in different methods
- Used Blockly to proceed joint control and gripper status control
- Used Roboflow to make joint function examination
- Used Python API - pymycobot to perform high level scripts control

- Established remote connection and virtual desktop to myCobot using VNC server

Physics system Team -  Final Report
Presented by: Erry Guan

Fig1. Roboflow interface Fig2. myblockly interface Fig3. Roboflow control Fig4. myblockly control



- Upgrade myCobot Raspberry Pi performance by reinstalling the OS to activate not 
running core.

- Camera’s frame per second got improved significantly
- Installed camera flange and adaptive gripper onto the main body
- Tried different object detection to detect dice

- Implemented the “EfficientNet” and “YOLO” models using Tensorflow Lite, which can get phone 
class and key class in pre-trained model instead of dice

- Based on opencv-python, applied HSV on greyscale analysis to isolate dice from background

Physics system Team -  Final Report
Presented by: Erry Guan

Fig1. Key class detection Fig2. dice detection in opencv-python



Physics system Team -  Final Report
Presented by: Erry Guan

Object detection

Transformation matrix

Joint Control

Pick and Place Task

Gripper Control

Opencv-python findContours method

Transformed the object coordinates from camera frame to robot end-effector 
local frame to world coordinates which was defined at the base of myCobot

Input end-effector destination and 
control drivers to corresponding angles

Close gripper to grab the dice

Back to Origin Move to Destination

Gripper Open

Back to Origin
Pick part 

Place part 

http://www.youtube.com/watch?v=tawV82EyiXw


- Determined the action space based on available joint range
- Camera calibration and distortion using chessboard calibration
- RL training scripts API have been completed for physics system

Currently limitation of Pick and Place:

● Long waiting time to satisfy motor calibration
● Object detection angle limitation for monocular camera, need more research to 

figure out how to implement this improvement

Physics system Team -  Final Report
Presented by: Erry Guan



Thank you for your attention


